Tanguy RIVOAL On the distribution of

نویسنده

  • Tanguy RIVOAL
چکیده

Hawkins introduced a probabilistic version of Erathosthenes’ sieve and studied the associated sequence of random “primes” (pk)k≥1. Using various probabilistic techniques, many authors have obtained sharp results concerning these random “primes”, which are often in agreement with certain classical theorems or conjectures for prime numbers. In this paper, we prove that the number of integers k ≤ n such that pk+α−pk = α is almost surely equivalent to n/ log(n), for a given fixed integer α ≥ 1. This is a particular case of a recent result of Bui and Keating (differently formulated) but our method is different and enables us to provide an error term. We also prove that the number of integers k ≤ n such that pk ∈ aN+ b is almost surely equivalent to n/a, for given fixed integers a ≥ 1 and 0 ≤ b ≤ a − 1, which is an analogue of Dirichlet’s theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phénomènes de symétrie dans des formes linéaires en polyzêtas

— We give two generalizations, in arbitrary depth, of the symmetry phenomenon used by Ball-Rivoal to prove that infinitely many values of Riemann ζ function at odd integers are irrational. These generalizations concern multiple series of hypergeometric type, which can be written as linear forms in some specific multiple zeta values. The proof makes use of the regularization procedure for multip...

متن کامل

Irrationality of the ζ Function on Odd Integers

The ζ function is defined by ζ(s) = ∑ n 1/n . This talk is a study of the irrationality of the zeta function on odd integer values > 2.

متن کامل

Irrationality measures for some automatic real numbers

This paper is devoted to the rational approximation of automatic real numbers, that is, real numbers whose expansion in an integer base can be generated by a finite automaton. We derive upper bounds for the irrationality exponent of famous automatic real numbers associated with the Thue–Morse, Rudin–Shapiro, paperfolding and Baum–Sweet sequences. These upper bounds arise from the construction o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009